Oxidatieve stress speelt een grote rol bij het verkrijgen van diabetes
Een onderzoek naar de werking van drie Ayurvedische kruiden.
Onderzoeken en klinische studies wijzen herhaaldelijk uit dat oxidatieve stress een grote rol speelt in de pathogenese van zowel diabetes mellitus type 1 als type 2. Oxidatieve stress leidt tot β-cel vernietiging door apoptosis. Door het zoeken naar een middel om oxidatieve stress te verminderen is strategisch gezien een goede insteek om beide type diabetes mellitus te behandelen.
Planten zijn een belangrijke bron van antioxidanten en hebben een beschermende effect tegen oxidatieve stress in biologische systemen.
Ayurvedische kruiden
De Indiase kruisbes (Phyllanthus emblica), kurkuma (Curcuma longa) en een klimplant (Tinospora cordifolia) zijn drie welbekende planten in de ayurveda die bekend staan om hun anti-hyperglycemische werking. Meerdere wetenschappelijke studies in vivo en in vitro bevestigen deze eigenschap.
In vitro onderzoek op cellijn vergelijkbaar met β-cellen
Drie Indiase onderzoekers Kalekar SA., Munshi RP. en Thatte UM. onderzochten de werking van deze drie kruiden in een test waarbij cellen van de cellijn RINm5F geinduceerd werden met streptozotocine (STZ). Streptozotocine is een stof die stress induceert. RINm5F is een cellijn die fungeert als model van de β-cellen uit de pancreas.
Parameters
Niet-toxische concentraties van plantenextracten werden geïdentificeerd met behulp van MTT assay. Lipideperoxidatie door MDA (Malondialdehyde) afgifte, modulatie van apoptose en afgifte van insuline waren de variabelen die werden gemeten om de door streptozotocine veroorzaakte schade en bescherming van de plantenextracten te beoordelen.
Op de rem
Alledrie de kruidenextracten vertoonde een significante rem op de vrijlating van MDA uit de RIN cellen. Dit toont onomstotelijk aan dat deze kruiden een beschermend effect hebben tegen STZ-geïnduceerde oxidatieve schade. Ze vertoonden een dosis afhankelijke anti-apoptotisch effect zoals te zien is bij een afname van de sub G0 populatie als reactie op STZ. Geen van de plantenextracten hadden een noemenswaardig groot effect op de afgifte van insuline uit de cellen.
Cornelis Peters
30 maart 2014
Bron
Do plants mediate their anti-diabetic effects through anti-oxidant and anti-apoptotic actions? an in vitro assay of 3 Indian medicinal plants.
Kalekar SA1, Munshi RP, Thatte UM.
BMC Complement Altern Med. 2013 Oct 5;13:257. doi: 10.1186/1472-6882-13-257.
Verder lezen
1. Thomas HE, Kay TW. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. Diabetes Metab Res Rev. 2000;13(4):251–261. doi: 10.1002/1520-7560(200007/08)16:4<251::AID-DMRR126>3.0.CO;2-C. [PubMed][Cross Ref]
2. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;13:473–486. [PubMed]
3. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;13(1):24–38. doi: 10.1002/jbt.10058. [PubMed] [Cross Ref]
4. Haskins K, Bradley B, Powers K, Fadok V, Flores S, Ling X, Pugazhenthi S, Reusch J, Kench J. Oxidative stress in type 1 diabetes. Ann N Y Acad Sci.2003;13:43–54. doi: 10.1196/annals.1288.006. [PubMed] [Cross Ref]
5. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia.2002;13:85–96. doi: 10.1007/s125-002-8248-z. [PubMed] [Cross Ref]
6. Zha F, Wang Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci. 2012;13:22. doi: 10.1186/2045-3701-2-22. [PMC free article] [PubMed] [Cross Ref]
7. Mathis D, Vence L, Benoist C. Beta-cell death during progression to diabetes.Nat. 2001;13:792–798. doi: 10.1038/414792a. [PubMed] [Cross Ref]
8. Sati SC, Sati N, Rawat U, Sati OP. Medicinal plants as a source of antioxidants. Res J Phytochemistry. 2010;13:213–224.
9. Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food. 2005;13:362–368. doi: 10.1089/jmf.2005.8.362. [PubMed] [Cross Ref]
10. Mehta S, Singh RK, Jaiswal D, Rai PK, Watal G. Anti-diabetic activity of Emblica officinalis in animal models. Pharmaceu Biol. 2009;13(11):1050–1055. doi: 10.3109/13880200902991532. [Cross Ref]
11. Nwozo S, Adaramoye O, Ajaiyeoba E. Oral administration of extract from curcuma longa lowers blood glucose and attenuates alloxan-induced hyperlipidemia in diabetic rabbits. Pak J Nutr. 2009;13(5):625–628.
12. Halim EM, Hussain A. Hypoglycemic, hypolipidemic and antioxidant properties of combination of Curcumin from Curcuma Longa, Linn, and partially purified product from Abroma Augusta, Linn. in Streptozotocin induced Diabetes. Ind J Clin Biochem. 2002;13(2):33–43. doi: 10.1007/BF02867969. [PMC free article] [PubMed] [Cross Ref]
13. Stanely M, Prince O, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol. 1999;13:9–15. [PubMed]
14. Stanely M, Prince P, Menon VP. Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytotherapia Res. 2001;13:213–218. doi: 10.1002/ptr.707. [PubMed] [Cross Ref]
15. Tjalve H. Streptozotocin: distribution, metabolism and mechanisms of action. Uppsala J Med Sci Suppl. 1983;13:145–157.
16. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;13(6):537–546. [PubMed]
17. Konings WT. Drijver EB:Radiation effects on membranes I: vitamin E deficiency and lipid peroxidation. Radiat Res. 1979;13:494–501. doi: 10.2307/3574991. [PubMed] [Cross Ref]
18. Krishan A. A Rapid flow cyto fluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975;13:188–193. doi: 10.1083/jcb.66.1.188. [PMC free article] [PubMed] [Cross Ref]
19. Kinloch RM, Treherne JM, Furness LM, Hajimohamadreza J. The pharmacology of apoptosis. Trends Pharm Sci. 1999;13:35–42. doi: 10.1016/S0165-6147(98)01277-2. [PubMed] [Cross Ref]
20. Selvam R, Subramanian L, Gayathri R, Angayarkanni N. The anti-oxidant activity of turmeric (Curcuma longa) J Ethnopharmacol. 1995;13(2):59–67. doi: 10.1016/0378-8741(95)01250-H. [PubMed] [Cross Ref]
21. Acharya JT, editor. Charaka Samhita. Varanasi: Chaukhamba Sanskrit Sansthan; 2001. Chikitsa Sthana; p. 376.
22. Gogte VM. In: Ayurvedic Pharmacology and Therapeutics Uses of Medicinal plants (Dravyagunavigyan) 1. Ramakrishnan S, editor. Mumbai: Bharatiya Vidya Bhavan Publication; 2000. Part II: medicinal plants; pp. 309–311.
23. Tuzun S, Girgin FK, Sozmen EY, Mentes G, Ersoz B. Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues. EXP TOX PAT. 1999;13(4–5):436–441. [PubMed]
24. Elmalí E, Altan N, Bukan N. Effect of the sulphonylurea glibenclamide on liver and kidney antioxidant enzymes in streptozocin-induced diabetic rats.Drugs R D. 2004;13(4):203–208. doi: 10.2165/00126839-200405040-00003. [PubMed] [Cross Ref]
25. Shimabukuro M, Higa N, Takasu N. Comparison of the antioxidant and vascular effects of gliclazide and glibenclamide in Type 2 diabetic patients: a randomized crossover study. J Diabetes Complications. 2006;13(3):179–183. doi: 10.1016/j.jdiacomp.2005.06.012. [PubMed] [Cross Ref]
26. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats.Int J Mol ScI. 2011;13(12(1)):829–843. [PMC free article] [PubMed]
27. Kwon KB, Yang JY, Ryu DG, Rho HW, Kim JS, Park JW, Kim HR, Park BH. Vibrio vulnificus cytolysin induces superoxide anion-initiated apoptotic signaling pathway in human ECV304 cells. J Biol Chem. 2001;13:47518–47523. doi: 10.1074/jbc.M108645200. [PubMed] [Cross Ref]
28. Kwon KB, Yoo SJ, Ryu DG, Yang JY, Rho HW, Kim JS, Park JW, Kim HR, Park BH. Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60 cells. Biochem Pharmacol. 2002;13:41–47. doi: 10.1016/S0006-2952(01)00860-7. [PubMed] [Cross Ref]
29. Tejedo JJ, Bernabe C, Ramirez R, Sobrino F, Bedoya FJ. NO induces a cGMP-independent release of cytochrome c from mitochondria which precedes caspase-3 activation in insulin-producing RINm5F cells. FEBS Lett.1999;13:238–243. doi: 10.1016/S0014-5793(99)01255-7. [PubMed][Cross Ref]
30. Hambrock A, de Oliveira Franz CB, Hiller S, Osswald H. Glibenclamide-induced apoptosis is specifically enhanced by expression of the sulfonylurea receptor isoform SUR1 but not by expression of SUR2B or the mutant SUR1(M1289T) J Pharmacol Exp Ther. 2006;13(3):1031–1037. [PubMed]
31. Masutani MH, Suzuki N, Kamada M, Watanabe O, Nozaki UT. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA. 1999;13:2301–2304. doi: 10.1073/pnas.96.5.2301. [PMC free article] [PubMed] [Cross Ref]
32. Sarkar N, Srivastava PK, Dubey VK. Understanding the language of vitamin C. Curr Nutri Food Sci. 2009;13:53–55. doi: 10.2174/157340109787314767.[Cross Ref]
33. Sameer Mahmood Z, Raji L, Saravanan T, Vaidya A, Mohan V, Balasubramanyam M. Gallic acid protects RINm5F beta-cells from glucolipotoxicity by its antiapoptotic and insulin-secretagogue actions.Phytother Res. 2010;13(4):632. [PubMed]
34. Han DH, Lee MJ, Kim JH. Antioxidant and Apoptosis-inducing Activities of Ellagic Acid. Anti Can Res. 2006;13:3601–3606. [PubMed]
35. Kanitkar M, Gokhale K, Galande S, Bhonde RR. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo. Br J Pharmacol. 2008;13(5):702–713. [PMC free article] [PubMed]
36. Sharma OP. Anti-oxidant activity of Curcumin and related compounds.Biochem Pharmacol. 1976;13(15):1811–1812. doi: 10.1016/0006-2952(76)90421-4. [PubMed] [Cross Ref]
37. Zinjarde PS, Bhargava SS, Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med.2011;13:5. doi: 10.1186/1472-6882-11-5. [PMC free article] [PubMed][Cross Ref]
38. Luo A, Fan Y. Antioxidant activities of berberine hydrochloride. J Med Plants Res. 2011;13(16):3702–3707.
39. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther. 2006;13:296–308. doi: 10.1158/1535-7163.MCT-05-0448. [PubMed] [Cross Ref]
40. Saha S, Ghosh S. Tinospora cordifolia: One plant, many roles. Ancient Sci Life. 2012;13:151–159. doi: 10.4103/0257-7941.107344. [PMC free article][PubMed] [Cross Ref]